FINANCIL MANAGEMENT refresher module

Forms of Business Organization
Creating Value for Investors

Stockholder-Manager Conflicts
Stockholder-Debtholder Conflicts

Balancing Interests of Shareholders and Society

Forms of Business Organization

涧:

*口为 : 8 ㄹ. 8

HEOM x
*** *

A2 +

－大＊＊＊

－大ャ゚

十 (

 * 0 鹵

Wh

大 大 大

 な＊＊）

Liquidity: Can we make required payments?

Asset management: Right amount of assets vs. sales?

Debt management: Right mix of debt and equity?

Profitability: Do sales prices exceed unit costs, and are sales high enough as reflected in PM, ROE, and ROA?

Market value: Do investors like what they see as reflected in P/E and M/B ratios?

－＊

－実

－\％\％：

- coss数
- 」 函

- 路
- 8 㳳米
- ＊十cか入

－＊o：

－cosprest
－\checkmark＊

－路
－
－$* 十 \cos$

－＊＊
－\because 农米

－＊orn

－coser
－ $\boldsymbol{\checkmark}$
－c国
－cos

- 沈
- 涾十 $x \times d$

- * * * 绊

－＊o：

－coss紜
－ $\boldsymbol{\jmath}$＊
－（国）
－＊

- 汤
- 涾十 XXd

－\because 米

－\％： 0 次

－coser 标
－$\sqrt{*}$
－ （䊉
－＊
－有

－＊

－米料林

－＊orion

－cosprow
－$\sqrt{*}$
－ 1 因标
－＊
－届

－＊大粏

BOND VALUATION

- A BOND IS A LONG-TERM DEBT I NSTRUMENT IN WHICH A BORROWER AGREES TO MAKE PAYMENTS OF PRI NCI PAL AND I NTEREST, ON SPECI FIC DATES, TO THE HOLDERS OF THE BOND.
- PAR VALUE: FACE AMOUNT OF THE BOND, WHI CH IS PAID AT MATURI TY (ASSUME \$1,000).
- COUPON I NTEREST RATE: STATED I NTEREST RATE (GENERALLY FIXED) PAID BY THE ISSUER. MULTI PLY BY PAR VALUE TO GET DOLLAR PAYMENT OF INTEREST.
- MATURITY DATE: YEARS UNTI L THE BOND MUST BE REPAID.
- ISSUE DATE: WHEN THE BOND WAS ISSUED.
- YIELD TO MATURITY: RATE OF RETURN EARNED ON A BOND HELD UNTI L MATURITY (ALSO CALLED THE "PROMI SED YI ELD").

WHAT IS THE VALUE OF A 10-YEAR, 10% ANNUAL COUPON BOND „ [F $R_{D}=10 \%$?

$$
\begin{aligned}
& V_{B}=\frac{\$ 100}{(1.10)^{1}}+\cdots+\frac{\$ 100}{(1.10)^{10}}+\frac{\$ 1,000}{(1.10)^{10}} \\
& V_{B}=\$ 90.91+\cdots+\$ 38.55+\$ 385.54 \\
& V_{B}=\$ 1,000
\end{aligned}
$$

CALCULATING THE VALUE OF A BOND

- THIS BOND HAS A \$1,000 LUMP SUM (THE PAR VALUE) DUE AT MATURITY ($\mathrm{T}=10$), AND ANNUAL $\$ 100$ COUPON PAYMENTS BEGINNING AT T = 1 AND CONTINUING THROUGH $T=10$. THE PRICE OF THE BOND CAN BE FOUND BY SOLVING FOR THE PV OF THESE CASH FLOWS.

WHAT'S THE VALUE OF A 10-YEAR BOND OUTSTANDING WITH THE SAME RISK BUT A 13\% ANNUAL COUPON RATE?

- THE ANNUAL COUPON PAYMENT IS \$130. SINCE THE RISK IS THE SAME IT HAS THE SAME YIELD TO MATURITY AS THE PREVIOUS BOND (10\%). THIS BOND SELLS AT A PREMIUM BECAUSE THE COUPON RATE > THE YIELD TO MATURITY.

[^0]WHAT'S THE VALUE OF A 10-YEAR BOND OUTSTANDING WITH THE SAME RISK BUT A 7\% ANNUAL COUPON RATE?

- THE ANNUAL COUPON PAYMENT IS \$70. SINCE THE RISK IS THE SAME IT HAS THE SAME YIELD TO MATURITY AS THE PREVIOUS BONDS (10\%). THIS BOND SELLS AT A DISCOUNT BECAUSE THE COUPON RATE < THE YIELD TO MATURITY.

EXCEL: $=P V(.10,10,70,1000)$

CHANGES IN BOND VALUE OVER TIME

- WHAT WOULD HAPPEN TO THE VALUE OF THESE THREE BONDS IF THE REQUIRED RATE OF RETURN REMAINED AT 10\%?

BOND VALUES OVER TLME

- AT MATURITY, THE VALUE OF ANY BOND MUST EQUAL ITS PAR VALUE.
- IF R R REMAINS CONSTANT:
- THE VALUE OF A PREMIUM BOND WOULD DECREASE OVER TIME, UNTIL IT REACHED $\$ 1,000$.
- THE VALUE OF A DISCOUNT BOND WOULD INCREASE OVER TIME, UNTIL IT REACHED $\$ 1,000$.
- THE VALUE OF A PAR BOND STAYS AT $\$ 1,000$.

WHAT IS THE YTM ON THE FOLLOWIING BOND?

- 10-YEAR; 9\% ANNUAL COUPON; \$1,000 PAR VALUE; SELLING FOR \$887.
- MUST FIND THE R THAT SOLVES THIS MODEL.

$$
\begin{aligned}
V_{B} & =\frac{\text { INT }}{\left(1+r_{d}\right)^{1}}+\cdots+\frac{\text { INT }}{\left(1+r_{d}\right)^{N}}+\frac{M}{\left(1+r_{d}\right)^{N}} \\
\$ 887 & =\frac{90}{\left(1+r_{d}\right)^{1}}+\cdots+\frac{90}{\left(1+r_{d}\right)^{10}}+\frac{1,000}{\left(1+r_{d}\right)^{10}}
\end{aligned}
$$

SOLVING FOR THE YTM

- SOLVING FOR I/YR, THE YTM OF THIS BOND IS 10.91\%. THIS BOND SELLS AT A DISCOUNT, BECAUSE YTM > COUPON RATE.

EXCEL: =RATE(10,90,-887,1000)

FIND YTM IF THE BOND PRICE IS \$1,134.20

- SOLVING FOR I/YR, THE YTM OF THIS BOND IS 7.08\%. THIS BOND SELLS AT A PREMIUM, BECAUSE YTM < COUPON RATE.

EXCEL: $=$ RATE $(10,90,-1134.20,1000)$

WHAT IS PRIICE RISK? DOES A 1-YEAR OR 10-YEAR BOND HAVE MORE PRICE RISK?

- PRICE RISK IS THE CONCERN THAT RISING R ${ }_{D}$ WILL CAUSE THE VALUE OF A BOND TO FALL.

$\mathrm{R}_{\underline{D}-}$	1-YEAR	CHANGE 10-YEAR	CHANGE
5\%	\$1,048	$>+\$.8 .8 \% 66$	+38.6\%
10\%	1,000	$>-4.4 \% 00$	- -25.1\%
15\%	956	749	

- THE 10-YEAR BOND IS MORE SENSITIVE TO INTEREST RATE CHANGES, AND HENCE HAS MORE PRICE RISK.

[LLLUSTRATING PRICE RISK

Value (\$)

WHAT IS REINVESTMENT RISK?

- REINVESTMENT RISK IS THE CONCERN THAT R ${ }_{D}$ WILL FALL, AND FUTURE CFS WILL HAVE TO BE REINVESTED AT LOWER RATES, HENCE REDUCING INCOME.

EXAMPLE: SUPPOSE YOU JUST WON \$500,000 PLAYING THE LOTTERY. YOU INTEND TO INVEST THE MONEY AND LIVE OFF THE INTEREST.

REINVESTMENT RISK EXAMPLE

- YOU MAY INVEST IN EITHER A 10-YEAR BOND OR A SERIES OF TEN 1-YEAR BONDS. BOTH 10-YEAR AND 1-YEAR BONDS CURRENTLY YIELD 10\%.
- IF YOU CHOOSE THE 1-YEAR BOND STRATEGY:
- AFTER YEAR 1, YOU RECEIVE $\$ 50,000$ IN INCOME AND HAVE $\$ 500,000$ TO REINVEST. BUT, IF 1-YEAR RATES FALL TO 3%, YOUR ANNUAL INCOME WOULD FALL TO \$15,000.
- IF YOU CHOOSE THE 10-YEAR BOND STRATEGY:
- YOU CAN LOCK IN A 10\% INTEREST RATE, AND \$50,000 ANNUAL INCOME FOR 10 YEARS, ASSUMING THE BOND IS NOT CALLABLE.

CONCLUSIONS ABOUT PRICE RISK AND REINVESTMENT RISK

	Short-term AND/OR High-coupon Bonds	Long-term AND/OR Low-coupon Bonds
Price risk	Low	High
Reinvestment risk	High	Low

SEMIANNUAL BONDS

1. MULTIPLY YEARS BY 2: NUMBER OF PERIODS $=2 \mathrm{~N}$
2. DIVIDE NOMINAL RATE BY 2: PERIODIC RATE (I/YR) $=R_{D} / 2$
3. DIVIDE ANNUAL COUPON BY 2: PMT = ANNUAL COUPON/2

WHAT IS THE VALUE OF A 10-YEAR, 10% SEMIANNUAL COUPON BOND, IF $R_{D}=13 \%$?

1. MULTIPLY YEARS BY 2: $\mathrm{N}=2 \times 10=20$
2. DIVIDE NOMINAL RATE BY $2: 1 / Y R=13 / 2=6.5$
3. DIVIDE ANNUAL COUPON BY 2: $\operatorname{PMT}=100 / 2=50$

EXCEL: $=P V(.065,20,50,1000)$

WOULD YOU PREFER TO BUY A 10-YEAR, 10\% ANNUAL COUPON BOND OR A $10-Y E A R, 10 \%$ SEMLANNUAL COUPON BOND, ALL ELSE EQUAL?

The semiannual bond's effective rate is:

$$
\text { EFF\% }=\left(1+\frac{r_{\text {NOM }}}{M}\right)^{M}-1=\left(1+\frac{0.10}{2}\right)^{2}-1=10.25 \%
$$

Excel: =EFFECT(.10,2)

$$
=10.25 \%
$$

$10.25 \%>10 \%$ (the annual bond's effective rate), so you would prefer the semiannual bond. WOULD BE THE PROPER PRICE FOR THE ANNUAL COUPON BOND?

- THE SEMIANNUAL BOND HAS A 10.25\% EFFECTIVE RATE, SO THE ANNUAL BOND SHOULD EARN THE SAME EAR. AT THESE PRICES, THE ANNUAL AND SEMIANNUAL BONDS ARE IN EQUILIBRIUM.

EXCEL: $=$ PV(.1025,10,100,1000)

- THE BOND'S YIELD TO MATURITY IS 8\%. SOLVING FOR THE YTC IS IDENTICAL TO SOLVING FOR YTM, EXCEPT THE TIME TO CALL IS USED FOR N AND THE CALL PREMIUM IS FV.

EXCEL: $=\operatorname{RATE}(8,50,-1135.90,1050)$

STOCK VALUATION

- REPRESENTS OWNERSHIP
- OWNERSHIP IMPLIES CONTROL
- STOCKHOLDERS ELECT DIRECTORS
- DIRECTORS ELECT MANAGEMENT
- MANAGEMENT'S GOAL: MAXIMIZE THE STOCK PRICE

DIFFERENT APPROACHES FOR ESTLMATLNG THE INTRINSIC VALUE OF COMMON STOCK

Discounted dividend model

Corporate valuation model

Models based on market multiples

DISCOUNTED DIVIDEND MODEL

$$
\hat{P}_{0}=\frac{D_{1}}{\left(1+r_{s}\right)^{1}}+\frac{D_{2}}{\left(1+r_{s}\right)^{2}}+\frac{D_{3}}{\left(1+r_{s}\right)^{3}}+\ldots+\frac{D_{\infty}}{\left(1+r_{5}\right)^{\infty}}
$$

- VALUE OF A STOCK IS THE PRESENT VALUE OF THE FUTURE DIVIDENDS EXPECTED TO BE GENERATED BY THE STOCK.

CONSTANT GROWTH STOCK

- A STOCK WHOSE DIVIDENDS ARE EXPECTED TO GROW FOREVER AT A CONSTANT RATE, G.

$$
\begin{aligned}
& D_{1}=D_{0}(1+G)^{1} \\
& D_{2}=D_{0}(1+G)^{2} \\
& D_{T}=D_{0}(1+G)^{\top}
\end{aligned}
$$

- IF G IS CONSTANT, THE DISCOUNTED DIVIDEND FORMULA CONVERGES TO:

$$
\hat{P}_{0}=\frac{D_{0}(1+g)}{r_{s}-g}=\frac{D_{1}}{r_{s}-g}
$$

FUTURE DIVIDENDS AND THEIR PRESENT VALUES

SUPERNORMAL GROWTH

- WHAT IF G = 30\% FOR 1 YR, 20\% FOR 1 YR, AND 10\% FOR 1 YR BEFORE ACHIEVING LONG-RUN GROWTH OF 4\%?
- CAN NO LONGER USE JUST THE CONSTANT GROWTH MODEL TO FIND STOCK VALUE.
- HOWEVER, THE GROWTH DOES BECOME CONSTANT AFTER 3 YEARS.

VALUIING COMMON STOCK WITH NONCONSTANT GROWTH

NONCONSTANT GROWTH: WHAT IF G = 0\% FOR 3 YEARS BEFORE LONG-RUN GROWTH OF 4\%?
$\mathrm{D}_{0}=\$ 2.00$.

FIND EXPECTED DIVIIDEND AND CAPITAL GAIINS YIELDS DURING THE FIRST AND FOURTH YEARS

- DIVIDEND YIELD (FIRST YEAR)

$$
=\$ 2.00 / \$ 37.19=5.38 \%
$$

- CAPITAL GAINS YIELD (FIRST YEAR)

$$
=9.00 \%-5.38 \%=3.62 \%
$$

- AFTER T = 3, THE STOCK HAS CONSTANT GROWTH AND DIVIDEND YIELD $=5 \%$, WHILE CAPITAL GAINS YIELD $=$ 4\%.

FIND EXPECTED ANNUAL DIVIIDEND AND CAPITAL GAIINS YIIELDS

- CAPITAL GAINS YIELD

$$
=G=-4.00 \%
$$

- DIVIDEND YIELD

$$
=9.00 \%-(-4.00 \%)=13.00 \%
$$

- SINCE THE STOCK IS EXPERIENCING CONSTANT GROWTH, DIVIDEND YIELD AND CAPITAL GAINS YIELD ARE CONSTANT. DIVIDEND YIELD IS SUFFICIENTLY LARGE (13\%) TO OFFSET NEGATIVE CAPITAL GAINS.

FIRM MULTIIPLES METHOD

- ANALYSTS OFTEN USE THE FOLLOWING MULTIPLES TO VALUE STOCKS.
- P/E
- P/CF
- P/SALES
- EXAMPLE: BASED ON COMPARABLE FIRMS, ESTIMATE THE APPROPRIATE P/E. MULTIPLY THIS BY EXPECTED EARNINGS TO BACK OUT AN ESTIMATE OF THE STOCK PRICE.
- ENTERPRISE-BASED MULTIPLES
- EV/EBITDA

PREFERRED STOCK

Hybrid security

Like bonds, preferred stockholders receive a fixed dividend that must be paid before dividends are paid to common stockholders.

However, companies can omit preferred dividend payments without fear of pushing the firm into bankruptcy.

IF PREFERRED STOCK WITH AN ANNUAL DIVIIDEND OF $\$ 5$ SELLS FOR \$100, WHAT IS THE PREFERRED STOCK'S EXPECTED RETURN?

$$
\begin{aligned}
V_{p} & =\frac{D}{r_{p}} \\
\$ 100 & =\frac{\$ 5}{r_{p}} \\
\hat{r}_{p} & =\frac{\$ 5}{\$ 100} \\
& =0.05=5 \%
\end{aligned}
$$

CAPM - SML - RISK vs RETURN

- TWO TYPES OF INVESTMENT RISK
- STAND-ALONE RISK
- PORTFOLIO RISK
- INVESTMENT RISK IS RELATED TO THE PROBABILITY OF EARNING A LOW OR NEGATIVE ACTUAL RETURN.
- THE GREATER THE CHANCE OF LOWER THAN EXPECTED, OR NEGATIVE RETURNS, THE RISKIER THE INVESTMENT.

PROBABILLITY DISTRIBUTIONS

- A LISTING OF ALL POSSIBLE OUTCOMES, AND THE PROBABILITY OF EACH OCCURRENCE.
- CAN BE SHOWN GRAPHICALLY.

SELECTED REALIZED RETURNS, 1926-2016

Selected Realized Returns, 1926-2016

	Average Return	Standard Deviation
Small-cap stocks	16.6%	31.9%
Large-cap stocks	12.0	19.9
Long-term corporate bonds	6.3	8.4
Long-term government bonds	6.0	9.9
U.S. Treasury bills	3.4	3.1
Portfolios:		
90% stocks $/ 10 \%$ bonds	11.3%	17.9%
70% stocks $/ 30 \%$ bonds	10.1	14.2

Source: Based on Roger G. Ibbotson and Duff \& Phelps, Stocks, Bonds, Bills, and Inflation: 2017 Yearbook (Hoboken, NJ: John Wiley \& Sons, Inc., 2017), pp. 2-6, 2-23.

SUMMARY OF EXPECTED RETURNS

EXPECTED RETURN

HIGH TECH	9.9%
MARKET	8.0%
US RUBBER	7.3%
T-BILLS	3.0%
COLLECTIONS	1.2%

- HIGH TECH HAS THE HIGHEST EXPECTED RETURN, AND APPEARS TO BE THE BEST INVESTMENT ALTERNATIVE, BUT IS IT REALLY?
- HAVE WE FAILED TO ACCOUNT FOR RISK?

COMPARING STANDARD DEVIATIONS

COMMENTS ON STANDARD DEVIATION AS A MEASURE OF RISk

- STANDARD DEVIATION (Σ_{1}) MEASURES TOTAL, OR STANDALONE, RISK.
- THE LARGER Σ_{1} IS, THE LOWER THE PROBABILITY THAT ACTUAL RETURNS WILL BE CLOSE TO EXPECTED RETURNS.
- LARGER Σ_{1} IS ASSOCIATED WITH A WIDER PROBABILITY DISTRIBUTION OF RETURNS.

COMPARING RISK AND RETURN

Security	Expected Return, \hat{r}	Risk, σ
T-bills	3.0%	0.0%
High Tech	9.9	20.0
Collections*	1.2	11.2
US Rubber*	7.3	18.8
Market	8.0	15.2
*Seems out of place.		

SHARPE RATIO

- THE SHARPE RATIO IS AN ALTERNATIVE MEASURE OF STAND-ALONE RISK. IT LOOKS AT EXCESS RETURN RELATIVE TO RISK.
- HIGH TECH'S SHARPE RATIO $=(9.9 \%-3 \%) / 20.0 \%=0.345$
- U.S. RUBBER'S SHARPE RATIO $=(7.3 \%-3 \%) / 18.8 \%=0.229$
- MARKET PORTFOLIO'S SHARPE RATIO $=(8 \%-3 \%) / 15.2 \%=0.329$
- COLLECTIONS' SHARPE RATIO $=(1.2 \%-3 \%) / 11.2 \%=-0.161$
- T-BILLS' SHARPE RATIO $=0$.
- EXCESS RETURN IS ASSET'S RETURN MINUS THE RISK-FREE RATE.
- RISK IS MEASURED AS THE STANDARD DEVIATION OF THE ASSET'S RETURN.
- A RISK-FREE ASSET WILL HAVE A SHARPE RATIO $=0$.

[INVESTOR ATTITUDE TOWARDS RISK

Risk premium: the difference between the return on a risky asset and a riskless asset, which serves as compensation for investors to hold riskier securities.

Risk aversion: assumes investors dislike risk and require higher rates of return to encourage them to hold riskier securities.

PORTFOLIO CONSTRUCTION: RISK AND RETURN

- ASSUME A TWO-STOCK PORTFOLIO IS CREATED WITH \$50,000 INVESTED IN BOTH HIGH TECH AND COLLECTIONS.
- A PORTFOLIO'S EXPECTED RETURN IS A WEIGHTED AVERAGE OF THE RETURNS OF THE PORTFOLIO'S COMPONENT ASSETS.
- STANDARD DEVIATION IS A LITTLE MORE TRICKY AND REQUIRES THAT A NEW PROBABILITY DISTRIBUTION FOR THE PORTFOLIO RETURNS BE CONSTRUCTED.

CALCULATIING PORTFOLIO EXPECTED RETURN

\hat{r}_{p} is a weighted average:

$$
\begin{aligned}
& \hat{r}_{p}=\sum_{i=1}^{N} w_{i} \hat{r}_{i} \\
& \hat{r}_{p}=0.5(9.9 \%)+0.5(1.2 \%)=5.5 \%
\end{aligned}
$$

AN ALTERNATIVE METHOD FOR DETERMINIING PORTFOLIO EXPECTED RETURN

| Economy | Prob | HT | Coll | Port |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Recession | 0.1 | -29.5% | 24.5% | -2.5% |
| Below avg | 0.2 | -9.5% | 10.5% | 0.5% |
| Average | 0.4 | 12.5% | -1.0% | 5.8% |
| Above avg | 0.2 | 27.5% | -5.0% | 11.3% |
| Boom | 0.1 | 42.5% | -20.0% | 11.3% |

$$
\begin{aligned}
\hat{r}_{p}= & 0.10(-2.5 \%)+0.20(0.5 \%)+0.40(5.8 \%) \\
& +0.20(11.3 \%)+0.10(11.3 \%)=5.5 \%
\end{aligned}
$$

CALCULATING PORTFOLIO STANDARD DEVIATION AND CV

$$
\begin{aligned}
& \sigma_{p}=\left[\begin{array}{c}
0.10(-2.5-5.5)^{2} \\
+0.20(0.5-5.5)^{2} \\
+0.40(5.8-5.5)^{2} \\
+0.20(11.3-5.5)^{2} \\
+0.10(11.3-5.5)^{2}
\end{array}\right]^{1 / 2}=4.6 \% \\
& C V_{p}=\frac{4.6 \%}{5.5 \%}=0.84
\end{aligned}
$$

GENERAL COMMENTS ABOUT RISK

- $\Sigma \sim 35 \%$ FOR AN AVERAGE STOCK.
- MOST STOCKS ARE POSITIVELY (THOUGH NOT PERFECTLY) CORRELATED WITH THE MARKET (I.E., P BETWEEN 0 AND 1).
- COMBINING STOCKS IN A PORTFOLIO GENERALLY LOWERS RISK.

RETURNS DISTRIBUTION FOR TWO PERFECTLY NEGATIVELY CORRELATED STOCKS ($\mathrm{P}=-1.0$)

Stocks W and M, held separately

Portfolio WM

RETURNS DISTRIBUTION FOR TWO PERFECTLY POSITTIVELY CORRELATED STOCKS ($\mathrm{P}=1.0$)

PARTIAL CORRELATION, $\mathrm{P}=+0.35$

Stocks W and Y, held separately

CREATING A PORTFOLIO: BEGINNIING WITH ONE STOCK AND ADDING RANDOMLY SELECTED STOCKS TO PORTFOLIO

- Σ_{p} DECREASES AS STOCKS ARE ADDED, BECAUSE THEY WOULD NOT BE PERFECTLY CORRELATED WITH THE EXISTING PORTFOLIO.
- EXPECTED RETURN OF THE PORTFOLIO WOULD REMAIN RELATIVELY CONSTANT.
- EVENTUALLY THE DIVERSIFICATION BENEFITS OF ADDING MORE STOCKS DISSIPATES (AFTER ABOUT 40 STOCKS), AND FOR LARGE STOCK PORTFOLIOS, Σ_{p} TENDS TO CONVERGE TO $\approx 20 \%$.

[LLUSTRATING DIVERSIFICATION EFFECTS OF A STOCK PORTFOLIO

BREAKING DOWN SOURCES OF RISK

```
Stand-alone risk = Market risk + Diversifiable risk
```

- MARKET RISK: PORTION OF A SECURITY'S STAND-ALONE RISK THAT CANNOT BE ELIMINATED THROUGH DIVERSIFICATION. MEASURED BY BETA.
- DIVERSIFIABLE RISK: PORTION OF A SECURITY'S STANDALONE RISK THAT CAN BE ELIMINATED THROUGH PROPER DIVERSIFICATION.

FAIILURE TO DIVERSIFY

- IF AN INVESTOR CHOOSES TO HOLD A ONE-STOCK PORTFOLIO (DOESN'T DIVERSIFY), WOULD THE INVESTOR BE COMPENSATED FOR THE EXTRA RISK THEY BEAR?
- NO!
- STAND-ALONE RISK IS NOT IMPORTANT TO A WELL-DIVERSIFIED INVESTOR.
- RATIONAL, RISK-AVERSE INVESTORS ARE CONCERNED WITH Σ_{p}, WHICH IS BASED UPON MARKET RISK.
- THERE CAN BE ONLY ONE PRICE (THE MARKET RETURN) FOR A GIVEN SECURITY.
- NO COMPENSATION SHOULD BE EARNED FOR HOLDING UNNECESSARY, DIVERSIFIABLE RISK.

CAPITAL ASSET PRICING MODEL (CAPM)

- MODEL LINKING RISK AND REQUIRED RETURNS. CAPM SUGGESTS THAT THERE IS A SECURITY MARKET LINE (SML) THAT STATES THAT A STOCK'S REQUIRED RETURN EQUALS THE RISK-FREE RETURN PLUS A RISK PREMIUM THAT REFLECTS THE STOCK'S RISK AFTER DIVERSIFICATION.

$$
R_{I}=R_{R F}+\left(R_{M}-R_{R F}\right) B_{I}
$$

- PRIMARY CONCLUSION: THE RELEVANT RISKINESS OF A STOCK IS ITS CONTRIBUTION TO THE RISKINESS OF A WELLDIVERSIFIED PORTFOLIO.

BETA

- MEASURES A STOCK'S MARKET RISK, AND SHOWS A STOCK'S VOLATILITY RELATIVE TO THE MARKET.
- INDICATES HOW RISKY A STOCK IS IF THE STOCK IS HELD IN A WELL-DIVERSIFIED PORTFOLIO.

COMMENTS ON BETA

- IF BETA = 1.0, THE SECURITY IS JUST AS RISKY AS THE AVERAGE STOCK.
- IF BETA > 1.0, THE SECURITY IS RISKIER THAN AVERAGE.
- IF BETA < 1.0, THE SECURITY IS LESS RISKY THAN AVERAGE.
- MOST STOCKS HAVE BETAS IN THE RANGE OF 0.5 TO 1.5.

CAN THE BETA OF A SECURITY BE NEGATIVE?

- YES, IF THE CORRELATION BETWEEN STOCK I AND THE MARKET IS NEGATIVE (I.E., $\mathrm{P}_{\mathrm{I}, \mathrm{M}}<0$).
- IF THE CORRELATION IS NEGATIVE, THE REGRESSION LINE WOULD SLOPE DOWNWARD, AND THE BETA WOULD BE NEGATIVE.
- HOWEVER, A NEGATIVE BETA IS HIGHLY UNLIKELY.

CALCULATING BETAS

- WELL-DIVERSIFIED INVESTORS ARE PRIMARILY CONCERNED WITH HOW A STOCK IS EXPECTED TO MOVE RELATIVE TO THE MARKET IN THE FUTURE.
- WITHOUT A CRYSTAL BALL TO PREDICT THE FUTURE, ANALYSTS ARE FORCED TO RELY ON HISTORICAL DATA. A TYPICAL APPROACH TO ESTIMATE BETA IS TO RUN A REGRESSION OF THE SECURITY'S PAST RETURNS AGAINST THE PAST RETURNS OF THE MARKET.
- THE SLOPE OF THE REGRESSION LINE IS DEFINED AS THE BETA COEFFICIENT FOR THE SECURITY.

ILLUSTRATIING THE CALCULATION OF BETA

BETA COEFFICIENTS FOR HIGH TECH, COLLECTIONS, AND T-BILLS

COMPARING EXPECTED RETURNS AND BETA COEFFICIENTS

Security	Expected Return		Beta
	9.9%		1.31
High Tech	8.0	1.00	
Market	7.3	0.88	
US Rubber	3.0	0.00	
T-Bills	1.2		-0.50

Riskier securities have higher returns, so the rank order is OK .

$$
\begin{aligned}
S M L: r_{i} & =r_{R F}+\left(r_{M}-r_{R F}\right) b_{i} \\
r_{i} & =r_{R F}+\left(R P_{M}\right) b_{i}
\end{aligned}
$$

- Assume the yield curve is flat and that $\mathrm{r}_{\mathrm{RF}}=$ 3.0\% and

$$
R P_{M}=r_{M}-r_{R F}=8.0 \%-3.0 \%=5.0 \%
$$

WHAT IS THE MARKET RISK PREMIUM?

- ADDITIONAL RETURN OVER THE RISK-FREE RATE NEEDED TO COMPENSATE INVESTORS FOR ASSUMING AN AVERAGE AMOUNT OF RISK.
- ITS SIZE DEPENDS ON THE PERCEIVED RISK OF THE STOCK MARKET AND INVESTORS' DEGREE OF RISK AVERSION.
- VARIES FROM YEAR TO YEAR, BUT MOST ESTIMATES SUGGEST THAT IT RANGES BETWEEN 4\% AND 8\% PER YEAR.

CALCULATING REQUIIRED RATES OF RETURN

$r_{\text {HT }}$	$=3.0 \%+(5.0 \%)(1.31)$
	$=3.0 \%+6.55 \%$
$r_{\text {M }}$	$=3.0 \%+(5.0 \%)(1.00)$
$r_{\text {USR }}$	$=3.55 \%$
$r_{\text {T-bill }}$	$=3.00 \%+(5.0 \%)(0.88)$
$r_{\text {Coll }}$	$=3.0 \%+(5.0 \%)(-0.50)$

EXPECTED VS. REQUIIRED RETURNS

	\hat{r}	r	
High Tech	9.9%	9.55%	Undervalued
Market	8.0	8.00	Fairly valued
US Rubber	7.3	7.40	Overvalued
T-bills	3.0	3.00	Fairly valued
Collections	1.2	0.50	Undervalued

ILLLUSTRATING THE SECURITY MARKET LINE

VERIFYING THE CAPM EMPIRICALLY

The CAPM has not been verified completely.

Statistical tests have problems that make verification almost impossible.

Some argue that there are additional risk factors, other than the market risk premium.

WEIGHTED AVERAGE COST OF CAPITAL

CALCULATING THE WEIGHTED AVERAGE COST OF CAPITAL

$$
W A C C=W_{D} R_{D}(1-T)+W_{P} R_{P}+W_{C} R_{S}
$$

- THE W'S REFER TO THE FIRM'S CAPITAL STRUCTURE WEIGHTS.
- THE R'S REFER TO THE COST OF EACH COMPONENT.

WHAT FACTORS INFLUENCE A COMPANY'S COMPOSITE WACC?

FACTORS THE FIRM CANNOT CONTROL:

- MARKET CONDITIONS SUCH AS INTEREST RATES AND TAX RATES.

FACTORS THE FIRM CAN CONTROL:

- FIRM'S CAPITAL STRUCTURE.
- FIRM'S DIVIDEND POLICY.
- THE FIRM'S INVESTMENT POLICY. FIRMS WITH RISKIER PROJECTS GENERALLY HAVE A HIGHER WACC.

SHOULD THE COMPANY USE THE COMPOSITE WACC AS THE HURDLE RATE FOR EACH OF [TS PROJECTS?

- NO! THE COMPOSITE WACC REFLECTS THE RISK OF AN AVERAGE PROJECT UNDERTAKEN BY THE FIRM. THEREFORE, THE WACC ONLY REPRESENTS THE "HURDLE RATE" FOR A TYPICAL PROJ ECT WITH AVERAGE RISK.
- DIFFERENT PROJECTS HAVE DIFFERENT RISKS. THE PROJECT'S WACC SHOULD BE ADJUSTED TO REFLECT THE PROJ ECT'S RISK.
- THE NEXT SLIDE ILLUSTRATES THE IMPORTANCE OF RISK-ADJUSTING THE COST OF CAPITAL. NOTE, IF THE COMPANY CORRECTLY RISK-ADJ USTED THE WACC, THEN IT WOULD SELECT PROJ ECT L AND REJ ECT PROJ ECT H. ALTERNATIVELY, IF THE COMPANY DIDN'T RISK-ADJ UST AND INSTEAD USED THE COMPOSITE WACC FOR ALL PROJ ECTS, IT WOULD MISTAKENLY SELECT PROJ ECT H AND REJ ECT PROJ ECT L.

DIVIISIONAL COST OF CAPITAL

CAPITAL BUDGETLNG

- ANALYSIS OF POTENTIAL ADDITIONS TO FIXED ASSETS.
- LONG-TERM DECISIONS; INVOLVE LARGE EXPENDITURES.
- VERY IMPORTANT TO FIRM'S FUTURE.

STEPS TO CAPITAL BUDGETING

1. ESTIMATE CFS (INFLOWS \& OUTFLOWS).

2. ASSESS RISKINESS OF CFS.
3. DETERMINE THE APPROPRIATE COST OF CAPITAL.
4. FIND NPV AND/OR IRR.
5. ACCEPT IF NPV > 0 AND/OR IRR > WACC. EXCLUSIVE PROJECTS?

- INDEPENDENT PROJECTS: IF THE CASH FLOWS OF ONE ARE UNAFFECTED BY THE ACCEPTANCE OF THE OTHER.
- MUTUALLY EXCLUSIVE PROJECTS: IF THE CASH FLOWS OF ONE CAN BE ADVERSELY IMPACTED BY THE ACCEPTANCE OF THE OTHER.

WHAT IS THE DIFFERENCE BETWEEN NORMAL AND NONNORMAL CASH FLOW STREAMS?

- NORMAL CASH FLOW STREAM: COST (NEGATIVE CF) FOLLOWED BY A SERIES OF POSITIVE CASH INFLOWS. ONE CHANGE OF SIGNS.
- NONNORMAL CASH FLOW STREAM: TWO OR MORE CHANGES OF SIGNS.
- MOST COMMON: COST (NEGATIVE CF), THEN STRING OF POSITIVE CFS, THEN COST TO CLOSE PROJ ECT. EXAMPLES INCLUDE NUCLEAR POWER PLANT, STRIP MINE, ETC.

NET PRESENT VALUE (NPV)

- SUM OF THE PVS OF ALL CASH INFLOWS AND OUTFLOWS OF A PROJ ECT:

$$
N P V=\sum_{t=0}^{N} \frac{C F_{t}}{(1+r)^{t}}
$$

EXAMPLE

Projects we'll examine:

	Cash Flow		
Year	L	S	$\Delta \mathrm{CF}$
0	-100	-100	0
1	10	70	-60
2	60	50	10
3	80	20	60

$\Delta C F$ is the difference between CF_{L} and CF_{S}. We'll use $\Delta \mathrm{CF}$ later.

WHAT IS PROJECT L'S NPV?

Year	CF_{t}	PV of CF ${ }_{\text {t }}$
0	-100	- 100.00
1	10	9.09
2	60	49.59
3	80	60.11
$W A C C=10 \%$		$=\$ 18.79$

Excel: $=\mathrm{NPV}\left(\right.$ rate $\left., \mathrm{CF}_{1}: \mathrm{CF}_{\mathrm{n}}\right)+\mathrm{CF}_{0}$
Here, CF_{0} is negative.

WHAT [S PROJECT S' NPV?

$W A C C=10 \%$

Year	$\mathrm{CF}_{\text {t }}$	PV of CF
0	-100	\$100.00
1	70	63.64
2	50	41.32
3	20	15.02
		\$ 19.98

Excel: $=N P V\left(\right.$ rate $\left., \mathrm{CF}_{1}: \mathrm{CF}_{\mathrm{n}}\right)+\mathrm{CF}_{0}$
Here, CF_{0} is negative.

SOLVIING FOR NPV: FINANCIAL CALCULATOR SOLUTION

- ENTER CFS INTO THE CALCULATOR'S CFLO REGISTER.

$$
\begin{aligned}
& \mathrm{CF}_{0}=-100 \\
& \mathrm{CF}_{1}=10 \\
& \mathrm{CF}_{2}=60 \\
& \mathrm{CF}_{3}=80
\end{aligned}
$$

- ENTER I/YR = 10, PRESS NPV BUTTON TO GET NPV ${ }_{\mathrm{L}}=\$ 18.78$.

RATIONALE FOR THE NPV METHOD

$$
\begin{aligned}
\text { NPV } & =\text { PV OF INFLOWS - COST } \\
& =\text { NET GAIN IN WEALTH }
\end{aligned}
$$

- IF PROJ ECTS ARE INDEPENDENT, ACCEPT IF THE PROJ ECT NPV > 0.
- IF PROJ ECTS ARE MUTUALLY EXCLUSIVE, ACCEPT PROJ ECT WITH THE HIGHEST POSITIVE NPV, ONE THAT ADDS THE MOST VALUE.
- IN THIS EXAMPLE, ACCEPT S IF MUTUALLY EXCLUSIVE (NPV ${ }_{S}>$ NPV $\left._{L}\right)$, AND ACCEPT BOTH IF INDEPENDENT.

INTERNAL RATE OF RETURN (IRR)

- SOLVING FOR IRR WITH A FINANCIAL CALCULATOR:

$$
0=\sum_{\mathrm{t}=0}^{\mathrm{N}} \frac{\mathrm{CF}}{\mathrm{t}} \mathrm{t}^{\mathrm{t}}(1+\operatorname{IRR})^{\mathrm{t}}
$$

- ENTER CFS IN CFLO REGISTER.
- PRESS IRR; IRR $_{\mathrm{L}}=18.13 \%$ AND $I R_{S}=23.56 \%$.
- SOLVING FOR IRR WITH EXCEL:

$$
=\operatorname{IRR}\left(\mathrm{CF}_{0}: \mathrm{CF}_{\mathrm{N}}, \text { GUESS FOR RATE }\right)
$$

HOW IS A PROJECT'S IRR SIMILAR TO A BOND'S YTM?

- THEY ARE THE SAME THING.
- THINK OF A BOND AS A PROJECT. THE YTM ON THE BOND WOULD BE THE IRR OF THE "BOND" PROJECT.
- EXAMPLE: SUPPOSE A 10-YEAR BOND WITH A 9\% ANNUAL COUPON AND \$1,000 PAR VALUE SELLS FOR \$1,134.20.
- SOLVE FOR IRR $=$ YTM $=7.08 \%$, THE ANNUAL RETURN FOR THIS PROJECT/BOND.

RATIONALE FOR THE IRR METHOD

- IF IRR > WACC, THE PROJ ECT'S RETURN EXCEEDS ITS COSTS AND THERE IS SOME RETURN LEFT OVER TO BOOST STOCKHOLDERS' RETURNS.

IF IRR > WACC, ACCEPT PROJ ECT.
IF IRR < WACC, REJ ECT PROJECT.

- IF PROJ ECTS ARE INDEPENDENT, ACCEPT BOTH PROJ ECTS, AS BOTH IRR > $W A C C=10 \%$.
- IF PROJ ECTS ARE MUTUALLY EXCLUSIVE, ACCEPT S, BECAUSE IRR $R_{S}>I_{\text {L }}$.

NPV PROFILES

- A GRAPHICAL REPRESENTATION OF PROJECT NPVS AT VARIOUS DIFFERENT COSTS OF CAPITAL.

WACC	NPV $_{L}$	NPV $_{\text {S }}$
0	$\$ 50$	$\$ 40$
5	33	29
10	19	20
15	7	12
20	(4)	5

[INDEPENDENT PROJECTS

NPV AND IRR ALWAYS LEAD TO THE SAME ACCEPT/REJECT DECISION FOR ANY GIVEN INDEPENDENT PROJECT.

MUTUALLY EXCLUSIVE PROJECTS

FINDING THE CROSSOVER RATE

- FIND CASH FLOW DIFFERENCES BETWEEN THE PROJECTS. SEE SLIDE 11-8.
- ENTER THE \triangle CFS IN CF, REGISTER, THEN PRESS ■ IRR. CROSSOVER RATE $=8.68 \%$, ROUNDED TO 8.7\%
- IF PROFILES DON'T CROSS, ONE PROJECT DOMINATES THE OTHER.

REASONS WHY NPV PROFILES CROSS

- SIZE (SCALE) DIFFERENCES: THE SMALLER PROJ ECT FREES UP FUNDS AT T = 0 FOR INVESTMENT. THE HIGHER THE OPPORTUNITY COST, THE MORE VALUABLE THESE FUNDS, SO A HIGH WACC FAVORS SMALL PROJECTS.
- TIMING DIFFERENCES: THE PROJECT WITH FASTER PAYBACK PROVIDES MORE CF IN EARLY YEARS FOR REINVESTMENT. IF WACC IS HIGH, EARLY CF ESPECIALLY GOOD, NPV ${ }_{S}>$ NPV $_{\text {L }}$.

REINVESTMENT RATE ASSUMPTIONS

- NPV METHOD ASSUMES CFS ARE REINVESTED AT THE WACC.
- IRR METHOD ASSUMES CFS ARE REINVESTED AT IRR.
- ASSUMING CFS ARE REINVESTED AT THE OPPORTUNITY COST OF CAPITAL IS MORE REALISTIC, SO NPV METHOD IS THE BEST. NPV METHOD SHOULD BE USED TO CHOOSE BETWEEN MUTUALLY EXCLUSIVE PROJECTS.
- PERHAPS A HYBRID OF THE IRR THAT ASSUMES COST OF CAPITAL REINVESTMENT IS NEEDED.

MANAGERS PREFER THE IRR TO THE NPV METHOD; IS THERE A BETTER IRR MEASURE?

- YES, MIRR IS THE DISCOUNT RATE THAT CAUSES THE PV OF A PROJ ECT'S TERMINAL VALUE (TV) TO EQUAL THE PV OF COSTS. TV IS FOUND BY COMPOUNDING INFLOWS AT WACC.
- MIRR ASSUMES CASH FLOWS ARE REINVESTED AT THE WACC.

CALCULATING MIRR

EXCEL: $\operatorname{MIRR}\left(\mathrm{CF}_{0}:\right.$ CF $_{\mathrm{N}}$, FINANCE_RATE,REINVEST_RATE)
WE ASSUME THAT BOTH RATES $=$ WACC.

WHY USE MIRR VERSUS IRR?

- MIRR ASSUMES REINVESTMENT AT THE OPPORTUNITY COST = WACC. MIRR ALSO AVOIDS THE MULTIPLE IRR PROBLEM.
- MANAGERS LIKE RATE OF RETURN COMPARISONS, AND MIRR IS BETTER FOR THIS THAN IRR.

WHAT IS THE PAYBACK PERIOD?

- THE NUMBER OF YEARS REQUIRED TO RECOVER A PROJECT'S COST, OR "HOW LONG DOES IT TAKE TO GET OUR MONEY BACK?"
- CALCULATED BY ADDING PROJECT'S CASH INFLOWS TO ITS COST UNTIL THE CUMULATIVE CASH FLOW FOR THE PROJECT TURNS POSITIVE.

CALCULATING PAYBACK

Project L's Payback Calculation

DIISCOUNTED PAYBACK PERIOD

USES DISCOUNTED CASH FLOWS RATHER THAN RAW CFS.

	0	10%	1	2	3
CF $_{\mathrm{t}}$	-100	10	60	80	
PV of CF_{t}	-100	9.09	49.59	60.11	
Cumulative	-100	-90.91	-41.32	18.79	

Disc Payback $=2+41.32 / 60.11=2.7$ years

STRENGTHS AND WEAKNESSES OF PAYBACK

- STRENGTHS

- PROVIDES AN INDICATION OF A PROJECT'S RISK AND LIQUIDITY.
- EASY TO CALCULATE AND UNDERSTAND.
- WEAKNESSES
- IGNORES THE TIME VALUE OF MONEY (TVM).
- IGNORES CFS OCCURRING AFTER THE PAYBACK PERIOD.
- NO RELATIONSHIP BETWEEN A GIVEN PAYBACK AND INVESTOR WEALTH MAXIMIZATION.

DISCOUNTED PAYBACK CONSIDERS TVM, BUT OTHER 2 FLAWS REMAIN.

FIND PROJECT P'S NPV AND [RR

Project P has cash flows (in 000s): $\mathrm{CF}_{0}=$
$-\$ 800, \mathrm{CF}_{1}=\$ 5,000$, and $\mathrm{CF}_{2}=-\$ 5,000$.

- Enter CFs into calculator CFLO register.
- Enter I/YR = 10.
- NPV = -\$386.78.
- IRR = ERROR Why?

MULTIPLE IRRS

WHY ARE THERE MULTIPLE IRRS?

- AT VERY LOW DISCOUNT RATES, THE PV OF CF 2 IS LARGE AND NEGATIVE, SO NPV < 0 .
- AT VERY HIGH DISCOUNT RATES, THE PV OF BOTH CF ${ }_{1}$ AND CF 2 ARE LOW, SO CF 0_{0} DOMINATES AND AGAIN NPV < 0 .
- IN BETWEEN, THE DISCOUNT RATE HITS CF 2 HARDER THAN CF ${ }_{1}$, SO NPV > 0 .
-RESULT: 2 IRRS.

WHEN TO USE THE MIRR [NSTEAD OF THE IRR? ACCEPT PROJECT P?

- WHEN THERE ARE NONNORMAL CFS AND MORE THAN ONE IRR, USE MIRR.
- PV OF OUTFLOWS @ 10\% = - $\$ 4,932.2314$.
- TV OF INFLOWS @ 10\% = \$5,500.
- MIRR $=5.6 \%$.
- DO NOT ACCEPT PROJ ECT P.
- NPV $=-\$ 386.78<0$.
- $\mathrm{MIRR}=5.6 \%<\mathrm{WACC}=10 \%$.

[^0]: EXCEL: $=P V(.10,10,130,1000)$

