Taking the "Project" out of Enrollment Projections:
 Simple Ways to Plan Effectively

Kristina M. Cragg, Ph.D. Assistant to the President for Strategic Research \& Analysis Valdosta State University - Strategic Research and Analysis
kmcragg@valdosta.edu

Angela Henderson, M.A. Senior Research Analyst
Valdosta State University - Strategic
Research and Analysis aselder@valdosta.edu

Southern Association for Institutional Research 2010 Conference New Orleans, Louisiana September 28, 2010

You might be attending this session if you...

- are responsible for predicting enrollment.
- are interested in enrollment modeling. OR
- This was the best session available in this time slot.

Forecasting

- Enrollment and tuition revenue forecasting are important elements of institutional planning.

Forecasting

- Traditional methodologies are long range.
- Not precise or timely
- Need new models which are sensitive to immediate change.
- Access to current data is necessary.

Accurate forecasting allows

 institutions to:- adapt
- accommodate
- utilize
- maximize

Enrollment \& Budget: Dual Demand

- Forecasting enrollments and predicting tuition revenues can help create a balanced budget when costs increase and budget cuts are imminent.

Building the Budget

HIGH Risk for Unbalanced Budget

Expenditure\$

Revenue\$

LOW Risk for Unbalanced Budget

VALDOSTA
 Budget Impact

- Feeds into budget model to predict dollars
- Presented at Planning and Budget Council which determines distribution (or cuts) of funds

Framework

- As enrollment trends vary across institutions (Pascarella \& Terenzini, 2005), a one-size-fits-all projection approach is not feasible.

Framework

- The economic downturn further strengthened the point that enrollment is affected by a variety of factors as enrollment growth for Fall 2009 was not consistent with expected or historical data.

- "As the number of college applicants and applications have gone up, many colleges have seen other things go down, including their acceptance rates, their "yield" rates, and their confidence in predicting enrollment outcomes" (Hoover, 2009), suggesting old enrollment modeling will not suffice.

Purpose

- The purpose of this presentation is to provide institutions with a simple method of predicting enrollment based on institution-specific factors that the entire campus community can understand.

Prior to Projection Model

- Number based on historical data
- "Enrollment has increased in the last 3 years by 3%, it will next year."
- This is method is risky in an uncertain and changing environment.

VALDOSTA
4.5 STATE 7

Enrollment Projection Model 1

Class Progression

	YR1	YR2	YR3	YR4
Freshmen		Special Case		
Sophomores				
Juniors				
Seniors				
Graduates	Special Case			

Development of Projection Model

First model:

- The first model focused only on total enrollment.
- Based on the number of students registered per day compared to total end of term registration.

Undergraduate				
Day	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$
Registration 2	8,166	8,493	8,807	8,967
Registration 3	8,275	8,590	8,867	9,021
Registration 4	8,339	8,636	8,927	9,063
Registration 5	8,365	8,678	8,990	9,089
Registration 6	8,375	8,708	9,033	9,125
Registration 7	8,391	8,729	9,071	9,200
Registration 8	8,717	9,044	9,068	9,197
Registration 9	NA	NA	9,065	9,197
Registration 10	NA	NA	9,062	9,162
UG Total	9,093	9,489	9,728	9,708

Development of Projection Model

 Dividing the number of undergraduate students registered at a point in time by the total number of undergraduate students creates a factor indicating distance from final enrollment.
Fall 2008

Number of
Undergraduate Students
Registered as of Registration Day 2:

8,967

Total Number of Undergraduate Students Registered: 9,708

Day 2 Registration Divided by Total Registration Creates a Factor of:
1.08

Development of Projection Model

 This model applied the previous Fall term factor for a particular day to the corresponding day in the upcoming term.| Undergraduate | | Factors | 2009 |
| :---: | :---: | :---: | :---: |
| Day | 2009 | 2008 | Projected |
| Registration 2 | 9,177 | 1.08 | 9,935 |
| Registration 3 | 9,241 | 1.08 | 9,945 |
| Registration 4 | 9,287 | 1.07 | 9,948 |
| Registration 5 | 9,322 | 1.07 | 9,957 |
| Registration 6 | 9,366 | 1.06 | 9,964 |
| Registration 7 | 9,368 | 1.06 | 9,885 |
| Registration 8 | 9,400 | 1.06 | 9,922 |
| Registration 9 | 9,413 | 1.06 | 9,936 |
| Registration 10 | 9,416 | 1.06 | 9,977 |

Note: factors are shown to 2 decimals for demonstration purposes.

VALDOSTA
 Model 1: Registration Day 2

Undergraduate Projection - as of Registration Day 2				
Students Registered	Factor Used	Projected Enrollment	Fall 2008 Enrollment	\% Increase
9,177	1.08	9,935	9,708	2.3%

Graduate Projection - as of Registration Day 2					
Students Registered	Factor Used	Projected Enrollment	Fall 2008 Enrollment	\% Increase	
906	2.15	1,945	1,782	9.2%	

Total Enrollment							
Projection - as of Registration Day 2							
Students Registered	Projected Enrollment	Fall 2008	Enrollment	Increase	10,083	11,881	11,490
---:	---:	---:					

Accuracy: within 4.3\% of total enrollment

Undergraduate Projection - as of Registration Day 15				
Students Registered	Factor Used	Projected Enrollment	Fall 2008 Enrollment	\% Increase
9,408	1.07	10,111	9,708	4.2%

Graduate Projection - as of Registration Day 15				
Students Registered	Factor Used	Projected Enrollment	Fall 2008 Enrollment	\% Increase
1,229	1.61		1,975	1,782

Total Enrollment			
Projection - as of Registration Day 15			
Students Registered	Projected Enrollment	Fall 2008 Enrollment	\% Increase
10,637	12,086	11,490	5.2%
	Accuracy: within 2.5% of total enrollment $(12,391)$		

VALDOSTA
4.5 STATE 7

Enrollment Projection Model 2

Need to Revise Projection Model

- The first model focused only on total enrollment.
- Revising the model allowed us to break out new freshmen from returning students and undergraduate from graduate students.

Revision of Projection Model

Factors added:

- Five years of Fall term data:
- Count of admission applications
- Count of admitted students accepted
- Count of Orientation registrations

Class Progression

	YR1	YR2	YR3	YR4
YR5				
Freshmen		Special Case		
Sophomores				
Juniors				
Seniors				
Graduates	Special Case			

Predicting New Freshmen

To predict the number of new freshmen we used the following elements:

- Number of new freshmen accepted (Admissions)
- Number of new freshmen accepted in previous years (Admissions)
- Number of new freshmen attending Orientation (Student Affairs)
(used to create a separate projection calculation)

Model 2: New Freshmen

From this information a matrix of weeks was created to align the data across the multiple years.

New Freshman Accepted							
ACCEPTED	Fall $\mathbf{2 0 0 4}$	Fall $\mathbf{2 0 0 5}$	Fall $\mathbf{2 0 0 6}$	Fall $\mathbf{2 0 0 7}$	Fall $\mathbf{2 0 0 8}$	Fall $\mathbf{2 0 0 9}$	Fall $\mathbf{2 0 1 0}$
$6 / 15$	3,332	3,673	3,761	3,674	4,383	4,882	5,182
$6 / 1$	3,251	3,605	3,676	3,532	4,250	4,744	5,027
$5 / 15$	3,200	3,556	3,640	3,452	4,160	4,626	4,951
$4 / 30$	3,142	3,489	3,512		3,998	4,522	4,811
$4 / 15$	2,992	3,388	3,384		3,830	4,310	4,662
$3 / 31$	2,895	3,237	3,271	3,109	3,657	4,117	4,431
$3 / 15$	2,751	3,092	3,067	2,877	3,417	3,863	4,146
$2 / 27$	2,558	2,860	2,881	2,534	3,121	3,569	3,790
$2 / 13$	2,318	2,592	2,616	2,263	2,810	3,214	3,405
Final Total	1,839	1,875	2,119	2,117	2,171	2,529	$?$

Model 2: New Freshmen

Using previous terms' data, historic factors are calculated for a particular day by dividing the total for the term by the point in time cumulative total.

New Freshman Accepted							
ACCEPTED	Fall $\mathbf{2 0 0 4}$	Fall $\mathbf{2 0 0 5}$	Fall $\mathbf{2 0 0 6}$	Fall $\mathbf{2 0 0 7}$	Fall $\mathbf{2 0 0 8}$	Fall $\mathbf{2 0 0 9}$	Fall $\mathbf{2 0 1 0}$
$6 / 15$	3,332	3,673	3,761	3,674	4,383	4,882	5,182
$6 / 1$	3,251	3,605	3,676	3,532	4,250	4,744	5,027
$5 / 15$	3,200	3,556	3,640	3,452	4,160	4,626	4,951
$4 / 30$	3,142	3,489	3,512	-	3,998	4,522	4,811
$4 / 15$	2,992	3,388	3,384	-	3,830	4,310	4,662
$3 / 31$	2,895	3,237	3,271	3,109	3,657	4,117	4,431
$3 / 15$	2,751	3,092	3,067	2,877	3,417	3,863	4,146
$2 / 27$	2,558	2,860	2,881	2,534	3,121	3,569	3,790
$2 / 13$	2,318	2,592	2,616	2,263	2,810	3,214	3,405
Final Total	1,839	1,875	2,119	2,117	2,171	2,529	$?$

Cumulative

 new Freshmen total as of 6/15Total Fall 2009 new Freshmen

Factor = 0.518

Model 2: New Freshmen

Repeating this process across multiple years of freshman acceptance data allows an average factor to be created and applied to current data.

New Freshman Accepted Factors							
Date	Fall $\mathbf{2 0 0 4}$	Fall $\mathbf{2 0 0 5}$	Fall $\mathbf{2 0 0 6}$	Fall $\mathbf{2 0 0 7}$	Fall $\mathbf{2 0 0 8}$	Fall $\mathbf{2 0 0 9}$	Avg

Model 2: New Freshmen

Applying the average factor to the number of current freshman acceptances for Fall 2010:

Accepted Date	Fall $\mathbf{2 0 1 0}$	Avg. 6-Year Factor	$\mathbf{2 0 1 0}$ Projected
$6 / 15$	5,182	0.536	2,777
$6 / 1$	5,027	0.551	2,769
$5 / 15$	4,951	0.561	2,777
$4 / 30$	4,811	0.566	2,721
$4 / 15$	4,662	0.590	2,749
$3 / 31$	4,431	0.625	2,770
$3 / 15$	4,146	0.665	2,758
$2 / 27$	3,790	0.725	2,748
$2 / 13$	3,405	0.804	2,736

Interpreting the Freshmen Model

What does this mean?
It means that on average, by June $15^{\text {th }}$, we can predict that new freshman enrollment will be approximately 53% of the number of new freshman accepted.

As of June 15th, 2010

Orientation Attendance

- The number of students attending Fall 2010 Orientation sessions were compared to the number of students attending Fall 2009 Orientation.
- Factor analysis was applied to the day and a projection for the number of new freshmen was generated.

Date	$\mathbf{2 0 0 9}$ Total	$\mathbf{2 0 1 0}$ Total	Total Percent Change	Factor	Projected
Day 5	1,296	1,312	1.23%	2.10	2,755
Day 6	1,397	1,411	1.00%	1.95	2,748
Day 7	1,465	1,411	-3.69%	1.86	2,621
Day 8	1,510	1,512	0.13%	1.80	2,725
Day 9	1,561	1,554	-0.45%	1.74	2,709
Day 10	1,595	1,591	-0.25%	1.71	2,714
Day 11	1,595	1,665	4.39%	1.71	2,840
Day 12	1,685	1,723	2.26%	1.61	2,782
Day 13	1,740	1,775	2.01%	1.56	2,776
Day 14	1,797	1,811	0.78%	1.51	2,742
Day 15	1,797	1,841	2.45%	1.51	2,788

Model 2: Returning Students

To predict the number of returning students we used the same factor formula as in enrollment model 1:

- Total number of students attending in previous years
- Number of students registered by day in previous years

Model 2: Final 2010 Projections

	$\mathbf{2 0 1 0}$ Projected Enrollment	$\mathbf{2 0 1 0}$ Actual	Difference
Freshmen	3,789	3,836	47
Sophomore	2,119	2,197	78
Junior	2,338	2,094	(244)
Senior	2,533	2,636	103
Total UG	10,780	10,763	(17)
Total Grad	2,268	2,121	(147)
Actual Total	13,048	12,864	(184)

- Actual Fall 2010 enrollment indicates the projection model was within 1.4\% of the actual total enrollment
- Within 0.2% of undergraduate total
- Within 6.5% of graduate total

Model 2: Final Thoughts

- Start analysis again in November
- Weekly tracking
- Look for ways to improve
- Would like to integrate financial aid data (but that's complicated)
- Overall, we are pleased with our enrollment modeling system. STATE V

Additional Enrollment Tools

Automated Portals

- Implementation of an automated portal allows program coordinators to track applications, admittances, and enrollments electronically.

Accepted Applications						
N \square Y - Sum-1,207		$\begin{array}{r} 459 \\ 748 \end{array}$				
Application Decision Trends						
App Desc	Fall 05	Fall 06	Fall 07	Fall 08	Fall 09	Fall 10
Accepted Pending	36	25	24	31	53	100
Accepted, letter forthcoming	0	0	0	0	0	150
Applicant Accepted	258	253	348	232	323	336
Denied Admission	69	91	119	174	149	154
Denied--Appeal for Admission	2	0	2	4	0	0
Final Acceptance	0	0	1	0	0	0
GOML - Acceptance	0	0	0	0	27	48
GOML Denied	0	0	0	0	8	12
GOML Semester 2 Accepted	0	0	0	66	89	53
GOML Semester 2 Denial	0	0	0	6	5	1
Graduated From VSU	117	135	129	119	129	0
Graduated From VSU-GOML	0	0	0	10	16	22
Inactivated Application	0	0	1	153	146	143
Probationary Accepted	0	0	0	155	54	39
Updated Application	0	1	1	13	98	16
Updated Application with AA	0	0	0	0	1	0
Withdraw Application VSU	175	136	131	71	43	133
report total:	657	641	756	1034	1141	1207

Seat Analysis Tool

- This reports allows the institution to plan adequate course and seat availability in conjunction with the enrollment model.
- Projections for each course are provided based on previous years' data and enrollment increases.

Year 1
BIOL 1010 （Biol Evolution and Diversity）Fall 2007

Classification		\＃	吹 Course	吹 Univ．
1．Freshman（New）		253	49.2	12.6
1．Freshman（Cont／Other）		） 34	6.6	7.6
2．Sophomore（Cont／Other）		er） 138	26.8	6.5
3．Junior（Cont／Other）		56	10.9	2.8
4．Senior（Cont／Other）		31	6	1
7．Graduate（Cont．）		1	． 2	． 1
Joint Enrolled		1	． 2	3.3
All Students		514	100\％	4.5438
Course Details		Faculty Details		
Sections	6 Full	Full	Professor	1
Seats Offered	529 Ti	Time	Professor	1
Total Enroll	514 Fl	Full	Temporary	3
SCH	1542 Ti	Time	Instructor	3
Avg．Section	$85.67 \mathrm{~Pa} \mathrm{Tin}$	Part Time	Instructor	2
Avg．Max Enroll	88.17			

BIOL 1020L（Biodiversity Lab）Fall 2007

Classification			\％Course	吹 Univ．
1．Freshman（New）		219	46.4	10.9
1．Freshman（Cont／Other）		31	6.6	6.9
2．Sophomore（Cont／other）		134	28.4	6.3
3．Junior（Cont／Other）		55	11.7	2.7
4．Senior（Cont／Other）		31	6.6	1
7．Graduate（Cont．）		1	． 2	． 1
Joint Enrolled		1	． 2	3.3
All Students		472	100\％	4.1726
Course Details Facu		ty Det	etails	
Sections	21 Full		Instructor	2
Seats Offered	505 Time		Instructor	2
Total Enroll	472 Full		Temporary	3
SCH	472 Time		Instructor	
Avg．Section	22.48 Part		Graduate	14
Enroll	22．48 Time		Assistant	14
Avg．Max Enroll	24．05 $\begin{aligned} & \text { Part } \\ & \text { Time }\end{aligned}$		Instructor	2

BIOL 1010 （Biol Evolution and Diversity）Fall 2008

Classification

1．Freshman（New） 19044.2
1．Freshman（Cont．OOther）$\quad 20 \quad 4.7 \quad 4.6$
2．Sophomore（Cont／Other） $10324 \quad 5$
3．Junior（Cont．／Other）$\quad 99 \quad 23 \quad 4.7$
4．Senior（Cont．／Other）
All Students
430 100\％ 3.733

BIOL 1010 （Biol Evolution and Diversity）Fall 2009

BIOL 1020L（Biodiversity Lab）Fall 2009

Classification

\＃\％Course \％Unw．

Classification	$\#$	吹Course	\％Univ．
1．Freshman（New）	175	42.1	8.4
1．Freshman（Cont／Other）	22	5.3	5.1
2．Sophomore（Cont．／Other）	90	21.6	4.4
3．Junior（Cont．／Other）	108	26	5.1
4．Senior（Cont．／Other）	21	5	.7
All Students	$\mathbf{4 1 6}$	$\mathbf{1 0 0 \%}$	$\mathbf{3 . 6 1 1 4}$

Course Details		Faculty Details		
Sections	18	Full		
Seats Offered	433	Time	Instructor	3
Total Enroll	416	Part	Graduate	
SCH	416	Time	Assistant	14
Avg．Section	23.11	Part	Time	Instructor
Enroll	1			
Avg．Max Enroll	24.06			

Avg．Max Enroll 24.06

Course Details		Faculty Details			
Sections	5	Full	Associate		
Seats Offered	433	Time	Professor	1	
Total Enroll	430	Full	Temporary	3	
SCH	1290	Time	Instructor	3	
Avg．Section	86	Part	Instructor	1	
Enroll	86	Time	Ins．		
Avg．Max Enroll	86.6				

BIOL 1020L（Biodiversity Lab）Fall 2008

Year 3
Year 2

Prediction Fall 2010

Prediction Year 4

Classification	\#	哕 Course	\% Univ.
1. Freshman (New)	245	40.563	8.8756
1. Freshman(Cont/Other	97	16.06	6.4925
2. Sophomore(Cont/iOther)	150	24.834	7.1933
3. Junior(Cont/Other)	88	14.57	4.2105
4. Senior(Cont/Other)	22	3.642	. 8786
7. Graduate(Cont.)	2	. 331	. 1048
All Students	604	100\%	4.526

Course Prediction Details

Sections 6.56			
Total Enroll 604			
SCH 1812			
Avg. Section Enroll 92.13			
Avg. Max Enroll 93.56			
BIOL 1020L (Biodiversity Lab) Fall 2010			
Classification	\#	$\begin{gathered} \text { \% } \\ \text { Course } \end{gathered}$	\% Univ.
1. Freshman (New)	217	38.339	7.8757
1. Freshman(Cont/other)	92	16.254	6.1194
2. Sophomore(Cont/iOther)	139	24.558	6.6279
3. Junior(Cont./Other)	93	16.431	4.4498
4. Senior(Cont/Other)	23	4.064	. 889
7. Graduate(Cont.)	2	. 353	. 1048
All Students	566	100\%	4.2413

Course Prediction Details

Sections 24.54

Total Enroll $\quad 566$
$\mathrm{SCH} \quad 566$
Avg. Section Enroll 23.07
Avg. Max Enroll 24.05

Current Year 4
BIOL 1010 (Biol Evolution and Diversity) Fall 2010

Classification

1. Freshman (New)
2. Freshman(Cont/Other)
3. Sophomore(Cont./Other)
4. Junior(Cont./Other)
5. Senior(Cont./Other)

All Students

Course Details

Faculty Details

Sections	9	Full	Not-Reported	1
Seats Offered	421	Time	Nomporary	
Total Enroll	392	Full	Tempory	7
SCH	1176	Time	Instructor	
Avg. Section	43.56	Part	Instructor	1
Enroll	4.20	Iime		

Enroll
46.78

BIOL 1020L (Biodiversity Lab) Fall 2010

Classification

1. Freshman (NeW)
2. Freshman(Cont./Other)
3. Sophomore(Cont./Other)
4. Junior(Cont./Other)
5. Senior(Cont./Other)

All Students

Course Details

Faculu Details

Total Enroll 38
$\mathrm{SCH} \quad 383$
Avg. Section Enroll 22.53
Avg. Max Enroll 24.76

Analytical method

These tools, based on historical trend data, provide timely indicators of likely enrollment growth and corresponding enrollment revenue.

Thank You

Questions and Comments

This PowerPoint presentation can be downloaded at http://www.valdosta.edu/sra/presentations.shtml

Taking the "Project" out of Enrollment Projections:
 Simple Ways to Plan Effectively

Kristina M. Cragg, Ph.D. Assistant to the President for Strategic Research \& Analysis Valdosta State University - Strategic Research and Analysis
kmcragg@valdosta.edu

Angela Henderson, M.A. Senior Research Analyst
Valdosta State University - Strategic
Research and Analysis aselder@valdosta.edu

Southern Association for Institutional Research 2010 Conference New Orleans, Louisiana September 28, 2010

